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Recap: network analysis
Analyzing network structure can help us:
1) Identify the most influential agents

• Power of the Medici family

2) Study properties of network formation
• Erdos-Reyni random graphs
• Preferential attachment
• Strategic network formation

3) Predict outcomes of multi-agent games
• Routing games
• Bargaining games

… and much more!
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What makes a successful social movement?

C = 8, B = 3

C = 1, B = 4

C = 5, B = 4 

C = 2, B = 7 

Protest if benefits > costs such that it is 
worth it for a person to take to the streets

Costs = 5, Benefits = 4 à Stay at home

Costs = 2, Benefits = 3 à Protest

*See Threshold Models of Collective Behavior by Mark Granovetter (1978)

https://www.jstor.org/stable/2778111


Protest if benefits > costs such that it is 
worth it for a person to take to the streets

Costs = 5, Benefits = 4 à Stay at home

Costs = 2, Benefits = 3 à Protest

Shared cost = 1 / # 
protestors

B = 1.1

B = 0.6

B = 0.4 

*See Threshold Models of Collective Behavior by Mark Granovetter (1978)

What makes a successful social movement?

What if people’s cost depended on one 
another, i.e., instead of looking at isolated 
agents, we make them interact?

C = 1/1 = 1
Positive utility 
regardless!

https://www.jstor.org/stable/2778111


Threshold models of protest
A threshold is the minimum # people someone needs to see on the streets before they decide to 
protest. Each person can have a different threshold.
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Case 1: everyone ends up 
taking to the streets

# People needed to protest

First person needs no one Second person needs a buddy These are scaredy cats

Avg = 
5.69



Threshold models of protest
A threshold is the minimum # people someone needs to see on the streets before they decide to 
protest. Each person can have a different threshold.

Case 1: everyone ends up 
taking to the streets

Case 2: the distribution is 
changed slightly, but the 
chain of dominos is 
broken!

Note that in both cases, 
the average preference of 
the individuals are 
identical, but we have 
drastically different 
outcomes.
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# People needed to protest

This person chickened out This person got braver

Avg = 
5.69



The butterfly effect

Can a butterfly in Brazil cause a Tornado in Texas?

?

Small changes in the 
initial state 

Large differences at a 
later state

Systems whose components strongly interact nonlinearly exhibit 
sensitive dependence on initial conditions



The butterfly effect

Can a butterfly in Brazil cause a Tornado in Texas?

Small changes in the 
initial state 

Large differences at a 
later state

Systems whose components strongly interact nonlinearly exhibit 
sensitive dependence on initial conditions

Yes!



A double pendulum

Two components coupled nonlinearly 
to each other

A double pendulum is an example of a strongly interacting nonlinear system

Chaotic motion
&

Sensitive dependence on initial conditions



Three double pendulums
A double pendulum is an example of a strongly interacting nonlinear system

Chaotic motion
&

Sensitive dependence on initial conditions

Two components coupled nonlinearly 
to each other



The weather
The weather is a more sophisticated example of a strongly interacting nonlinear system

Lorenz equations:

Sample solution

The Lorenz attractor



Measuring sensitivity
Lyapunov exponents characterize the rate of divergence of infinitesimally close trajectories

𝑠!

𝑠! + 𝛿!

𝑠(𝑡)

𝑠 𝑡 + 𝛿 𝑡

𝛿 𝑡
𝛿 𝑡 = 𝛿'𝑒()

𝜆 = “Lyapunov exponent”



Predicting the weather
Can we predict the weather 100 days in advance?

𝑠!

𝑠! + 𝛿!

𝑠(𝑡)

𝑠 𝑡 + 𝛿 𝑡

𝛿 𝑡∗ = 𝛿∗
𝛿 𝑡 = 𝛿'𝑒()

𝜆 = “Lyapunov exponent”

Predictability horizon 𝑡∗
Time beyond which you can’t 
reliability predict:

𝑡 = “Lyapunov time”
𝑡 ≈

1
𝜆 ln

𝛿∗

𝛿!

Let’s say we can predict whether 10 days in 
advance (i.e. t∗ = 10). What if we wanted t∗ = 100?

For t∗ → 10t∗, we need 𝛿" →
#
$!"

𝛿" ≈
#

%%"%&
𝛿"!



Predicting the weather
Can we predict the weather 100 days in advance?

𝑠!

𝑠! + 𝛿!

𝑠(𝑡)

𝑠 𝑡 + 𝛿 𝑡

𝛿 𝑡∗ = 𝛿∗

Predictability horizon 𝑡∗

Let’s say we can predict whether 10 days in 
advance (i.e. t∗ = 10). What if we wanted t∗ = 100?

For t∗ → 10t∗, we need 𝛿" →
#
$!"

𝛿" ≈
#

%%"%&
𝛿"!

You can change it though! (if you look far 
enough ahead)



The butterfly effect

Can a butterfly in Brazil cause a Tornado in Texas?

Small changes in the 
initial state 

Large differences at a 
later state

Yes!



The butterfly effect of climate?

Can a butterfly in Brazil cause a Tornado in Texas?

Small changes in the 
initial state 

Long-run statistics

?

affect the climate



Ergodicity
A system is ergodic if it eventually visits every possible state

Ergodic

Non-ergodic

System eventually 
averages out

Change long-run 
behavior



Ergodicity
A system is ergodic if it eventually visits every possible state

Climate eventually 
averages out

Ergodic

Non-ergodic

Solve climate 
change!



Can we change the world?

She’s a 10 but she can’t 
solve climate change

What about 
you?



Which is more complex?

A human person

How many bits of information is needed 
to completely describe the system?

12000 moles ~7×10#$atoms

2.2×10%$ TB ~ 2 trillion internets of data

Assuming the velocity and position of each gas 
molecule are described by a 256-bit floats:

However, the human has a lot of order/repeated 
patterns, so we can compress that information to 
be a lot less!

Is the box of gas actually more complex?
12000 moles of ideal gas

Complexity of a system = amount of information needed to describe its behavior.

See An Introduction to Complex Systems Science and Its Applications by Alexander Siegenfeld and Yaneer Bar-Yam

https://arxiv.org/abs/1912.05088


Which is more complex?

A human person12000 moles of ideal gas

Complexity of a system = amount of information needed to describe its behavior.

Not so fast! 
We perceive the box of gas as being less 
complex because it doesn’t have 
meaningful structure, while humans do.

In other words, due to ergodicity, the exact 
positions of the gas molecules actually 
doesn’t matter at our level of aggregation, 
but the structure of the human certainly does.

For us, the box of gas can be 
described by just three parameters!

Pressure (P)
Volume (V)

Temperature (T)

See An Introduction to Complex Systems Science and Its Applications by Alexander Siegenfeld and Yaneer Bar-Yam

https://arxiv.org/abs/1912.05088


Ergodicity saves the day

Trajectory of particle A Trajectory of particle B Trajectory of any (representative) particle

The large-scale behavior of the system can be adequately described by a few variables because 
statistical fluctuations average out over time.



Complexity is scale-dependent

12000 moles of ideal gas A human person

Homogeneous

Homogeneous

Heterogeneous

Neural circuits

Neurons

Membranes

ProteinsSimple system Complex system



Complexity profiles

See An Introduction to Complex Systems Science and Its Applications by Alexander Siegenfeld and Yaneer Bar-Yam

Gas: a lot of complexity at a tiny 
scale, but little at larger scales

Humans: multi-scale structures

Army: top-down control

https://arxiv.org/abs/1912.05088


Separation of scale

High complexity Low complexityLow complexity

We can understand systems when the 
macroscopic behavior of interest are 
independent from small-scale behavior

The gas can be described by a few parameters 
because trajectories are ergodic: they all average out 
to a simple behavior at a large scale!

Center of mass

[1] Siegenfeld and Bar-Yam (2020)



Breakdown of mean-field descriptions

Average threshold = 5.69 Average threshold = 5.69

Because of interactions between components, simply describing systems by their average does not 
suffice. The microscopic details matter!

Aggregate threshold of 
5.69

• Stay at home if 
benefits > threshold

• Protest if threshold > 
benefit

Mean-field/traditional 
cost/benefit analysis

People either go protest 
or not at all, the details 
of the distribution does 
not matter.

Strongly-interacting systems: microscopic details matter!
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We’ve seen mean-field theories before
Mean-field descriptions underly many theories in natural and social science. They generally work quite 
well, but can break down in complex systems.

Mean-field games (markets) Networked games

People interact with the aggregate forces 
of supply and demand. We can define a 

“representative agent.”

People interact locally with different 
structural conditions

Pressure, Volume, Temperature

Statistical physics

Newtonian physics

Center of mass



Interactions can break down mean-field descriptions
Complex social systems are often poorly described by aggregate statistics

Cooperate Defect
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Rational agent Behavioral economics Game theory

t = 0

t = 1

t = 2

-12 -15-18

-15-24

-30-30

Start
Failure to 

coordinate 
across 
time

Failure to 
coordinate 

across 
people

Rational agent assumptions break down at larger levels of aggregation (individual optimal ≠ 
social optimal). You cannot simply take the means of their decisions!

Are markets efficient around equilibrium prices? Are companies and countries rational actors?



Theories of complex systems

High complexity Low complexityLow complexity

Individual actors

Firms

Macroeconomic 
indicators

Looking at you, economics.

[1] Siegenfeld and Bar-Yam (2020)



Tradeoffs between complexity and scale
Complexity requires order: for there to be structure at larger scales, there must be coordination 
between many components at smaller scales. But this means that smaller scales are now 
limited by independencies.

Tradeoff between adaptability 
and efficiency:

Adaptable: many independent 
actions at small scales. Inefficient 
but robust.

Efficient: many parts interact and 
work in concert, performing an 
optimal task at the largest scale. 
Efficient but fragile.

[1] Siegenfeld and Bar-Yam (2020)



Tradeoffs between complexity and scale
Complexity requires order: for there to be structure at larger scales, there must be coordination 
between many components at smaller scales. But this means that smaller scales are now 
limited by independencies.

Tradeoff between adaptability 
and efficiency:

Adaptable: many independent 
actions at small scales. Inefficient 
but robust.

Efficient: many parts interact and 
work in concert, performing an 
optimal task at the largest scale. 
Efficient but fragile.

You can’t have your cake and eat it too, 
but sometimes, you need a particular 
system to solve certain problems.

Socialist/planned 
economies

Capitalist/market economies

[1] Siegenfeld and Bar-Yam (2020)



Matching complexity profiles with the environment

A smaller army vs. a 
larger army

A less vs. more well-
trained army

An insurgent army vs. 
a large national army

Bigger army wins! More trained army 
wins!

The battlefield environment 
decides the winner: 
fighting in the cities vs. in 
the open fields.

[1] Siegenfeld and Bar-Yam (2020)



Systems can adapt to their environments over time

3.5 billion years of 
natural selection

Low-complexity organism High-complexity organism

pi_net = nn.Sequential(
nn.Linear(obs_dim, 64),
nn.Tanh(),
nn.Linear(64, 64),
nn.Tanh(),
nn.Linear(64, act_dim)

)

Low-complexity program

Machine learning

High-complexity program



Multi-scale adaptation
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Optimizing across interactionsOptimizing across a lifetime Optimizing across generations Optimizing across species

Norms
Institutions

Culture
Morality

Biology 
Behavorial traits

Habits
Knowledge

Learning doesn’t just happen via gradient descent!



Our definition of a complex system
A complex system is made up of strongly interacting components that exhibit 
correlated behavior between scales – wherein microscopic details alter the 
collective dynamics of the system – such that its macroscopic properties cannot 
be easily described by a small number of aggregate measures.

Self-organized behavior

Society

𝑢!(#)

𝑢!(%)

𝑢!(&)

𝑢!(')

𝑢!(()

In other words, it is a multi-agent system whose whole is greater than the 
sum of its parts.



Agent complexity
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AlphaStar
AlphaGo

Game of Life
Stock market

Human society

Human individual

Limits of 
understanding

Lecture 1

Lecture 2

Lecture 3

Lecture 4, 5

Lecture 6



Parting words
Science and math can be beautiful, but they also provide powerful tools 

for us to create positive change in the world. 

Use them well, use them to do things that matter to you!



• An Introduction to Complex Systems Science and Its Applications: great non-mathematical 
review of complex systems

• Chaos: The Science of the Butterfly Effect video by Veritasium
• Dynamics of Complex Systems: review of many topics, more mathematically in-depth
• Statistical Mechanics: Entropy, Order Parameters, and Complexity: fun undergraduate-level 

textbook on statistical physics from a complexity perspective
• A Third Wave in the Economics of Climate Change: why complexity science is important for 

thinking about climate policy
• Systems Effects: Complexity in Political and Social Life: politics and complex systems
• How China Escaped the Poverty Trap: economic development and complex systems
• Courses from the Santa Fe Institute

References and additional resources

https://arxiv.org/abs/1912.05088
https://www.youtube.com/watch?v=fDek6cYijxI
https://necsi.edu/dynamics-of-complex-systems
https://sethna.lassp.cornell.edu/StatMech/
https://link.springer.com/article/10.1007/s10640-015-9965-2
https://press.princeton.edu/books/paperback/9780691005300/system-effects
https://www.cornellpress.cornell.edu/book/9781501700200/how-china-escaped-the-poverty-trap/
https://www.santafe.edu/engage/learn/programs

